Zika Virus and the Guillain–Barré Syndrome — Case Series from Seven Countries

TO THE EDITOR: Zika virus (ZIKV) disease had been described as a mild, self-limiting illness associated with fever, rash, joint pain, and conjunctivitis.1 However, during the outbreak in French Polynesia, 42 patients with ZIKV disease were found to have the Guillain–Barré syndrome, which represented a marked increase from the approximately 5 cases detected annually during the previous 4 years.2 A connection with the Guillain–Barré syndrome had previously been described in association with other flavivirus illnesses3,4 but not with ZIKV infection.

From April 1, 2015, to March 31, 2016, a total of 164,237 confirmed and suspected cases of ZIKV disease and 1474 cases of the Guillain–Barré syndrome were reported in Bahia, Brazil; Colombia; the Dominican Republic; El Salvador; Honduras; Suriname; and Venezuela. To examine the temporal association between ZIKV disease and the Guillain–Barré syndrome, graphical and time-series analyses were applied to these two independent data sets, which were collected through official International Health Regulations channels or from ministry of health websites (see the Supplementary Appendix, available with the full text of this letter at NEJM.org). The data obtained from country reports contained no personally identifiable information and were collected as part of routine public health surveillance; therefore, the analysis was exempt from review by an ethics board. Differ- ences between the observed and expected numbers of cases of the Guillain–Barré syndrome during the ZIKV transmission period, as well as differences in the incidence of the Guillain–Barré syndrome and ZIKV disease according to age and sex, were analyzed with the use of Poisson regression models (see the Supplementary Appendix).

The analysis suggests that changes in the reported incidence of ZIKV disease during 2015 and early 2016 were closely associated with changes in the incidence of the Guillain–Barré syndrome. During the weeks of ZIKV transmission, there were significant increases in the incidence of the Guillain–Barré syndrome, as compared with the pre-ZIKV baseline incidence, in Bahia State (an increase of 172%), Colombia (211%), the Dominican Republic (150%), El Salvador (100%), Honduras (144%), Suriname (400%), and Venezuela (877%) (Table 1). When the incidence of ZIKV disease increased, so did the incidence of the Guillain–Barré syndrome (Fig. 1A). In the six countries that also reported decreases in the incidence of ZIKV disease, the incidence of the Guillain–Barré syndrome also declined. When the seven epidemics of ZIKV disease are aligned according to week of peak incidence, the total number of cases of ZIKV disease and the Guillain–Barré syndrome are closely coincident (Fig. 1B), although the period from acquiring infection to reporting disease is approximately 2 weeks longer for ZIKV than for the Guillain–Barré syndrome, a pattern that is especially visible in data from Colombia and Venezuela. Whether the 2-week difference can be explained in terms of incubation periods or reporting delays is not yet known. We explored the potential effect of dengue virus circulation on the incidence of the Guillain–Barré syndrome and found no link (see the Supplementary Appendix). In any event, we infer from these two series of cases,
Table 1. Expected and Observed Numbers of Cases of the Guillain–Barré Syndrome.*

<table>
<thead>
<tr>
<th>Region</th>
<th>Population</th>
<th>Pre-ZIKV Period</th>
<th>ZIKV Transmission Period</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean Annual Cases of GBS (95% CI)</td>
<td>Annual Cumulative Incidence of GBS (95% CI)</td>
<td>Expected Cases of GBS per Week (95% CI)</td>
</tr>
<tr>
<td></td>
<td>no.</td>
<td>no. cases/100,000</td>
<td>no. wk</td>
</tr>
<tr>
<td>Bahia, Brazil</td>
<td>15,203,934</td>
<td>(37 to 77)</td>
<td>0.37 (0.30 to 0.46)</td>
</tr>
<tr>
<td>Colombia</td>
<td>49,529,208</td>
<td>(48 to 436)</td>
<td>0.49 (0.44 to 0.54)</td>
</tr>
<tr>
<td>Dominican Republic</td>
<td>10,652,135</td>
<td>(47 to 114)‡</td>
<td>0.69 (0.56 to 0.83)‡</td>
</tr>
<tr>
<td>El Salvador</td>
<td>6,426,002</td>
<td>(99 to 241)</td>
<td>2.65 (2.27 to 3.06)</td>
</tr>
<tr>
<td>Honduras</td>
<td>8,423,917</td>
<td>(83 to 137)</td>
<td>1.31 (1.08 to 1.57)</td>
</tr>
<tr>
<td>Suriname</td>
<td>548,456</td>
<td>(139 to 336)‡</td>
<td>0.69 (0.60 to 0.78)‡</td>
</tr>
<tr>
<td>Venezuela</td>
<td>31,292,702</td>
<td>(139 to 336)‡</td>
<td>0.69 (0.60 to 0.78)‡</td>
</tr>
</tbody>
</table>

* CI denotes confidence interval, GBS the Guillain–Barré syndrome, and ZIKV Zika virus.
† Rate ratios are based on the incidence of GBS during the ZIKV transmission period as compared with that during the pre-ZIKV period.
‡ Values are estimates based on the median rates obtained from countries with information available.

Approximately 500 million people in Latin America and the Caribbean are at risk for ZIKV infection, because they live in areas that are less than 2000 m above sea level where competent vectors also are found. It is clear that increases in the incidence of the Guillain–Barré syndrome to a level that is 2.0 and 9.8 times as high as baseline, as we have reported here, pose a substantial burden on populations and health systems. In this region, reports of the Guillain–Barré syndrome could serve as a sentinel for ZIKV disease and other neurologic disorders linked to ZIKV, including microcephaly, another ZIKV-related disorder. Overall, females had a 75% higher reported incidence rate of ZIKV disease than did males (rate ratio, 1.75; 95% confidence interval [CI], 1.71 to 1.79). The rate was especially high among women 20 to 40 years of age, and could be due to greater reporting by health workers, who are generally more frequent active case-finding. The increased risk was also observed in vain. The Supplementary Appendix. This difference was also observed in the Yap Island (Micronesia) epidemic. panel B shows weekly case reports of ZIKV disease and GBS in six countries and in Bahia, Brazil, 2015 to 2016; panel C shows weekly case reports of ZIKV disease and GBS in six countries and in Bahia, Brazil, 2015 to 2016.
A Weekly Case Reports of ZIKV Disease and GBS in Six Countries and Bahia, Brazil, 2015–2016

B Case Series of ZIKV Disease and GBS Aligned to the Week of Peak Incidence of ZIKV Disease
Thais dos Santos, M.S.
Angel Rodriguez, M.D.
Maria Almiron, M.S.
Antonio Sanhueza, Ph.D.
Pilar Ramon, M.D., Ph.D.
Pan American Health Organization
Washington, DC
Wanderson K. de Oliveira, M.D.
Giovanini E. Coelho, M.D.
Ministry of Health
Brasilia, Brazil
Roberto Badaró, M.D.
Federal University of Bahia
Salvador, Brazil
Juan Cortez, M.D.
Pan American Health Organization
Washington, DC
Martha Ospina, M.D.
Ministry of Health
Bogotá, Colombia
Raquel Pimentel, M.D.
Ministry of Health
Santo Domingo, Dominican Republic
Rolando Masis, M.D.
Ministry of Health
San Salvador, El Salvador
Franklin Hernandez, M.D.
Pan American Health Organization
Washington, DC
Bredy Lara, M.D.
Ministry of Health
Tegucigalpa, Honduras
Romeo Montoya, M.D.
Pan American Health Organization
Washington, DC
Beatrix Jubithana, M.D.
Ministry of Health
Paramaribo, Suriname
Angel Melchor, M.D.
Ministry of Health
Caracas, Venezuela
Angel Alvarez, M.D.
Sylvain Aldighieri, M.D.
Pan American Health Organization
Washington, DC
Christopher Dye, D.Phil.
World Health Organization
Geneva, Switzerland
Marcos A. Espinal, M.D., Dr.P.H.
Pan American Health Organization
Washington, DC
Disclosure forms provided by the authors are available with the full text of this letter at NEJM.org.

This letter was published on August 31, 2016, at NEJM.org.

DOI: 10.1056/NEJMc1609015
Correspondence Copyright © 2016 Massachusetts Medical Society.